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The antiplane mixed boundary-value problem of electroelasticity of the oscillations of an infinite piezoceramic cylinder, weakened 

by a curvilinear tunnel crack, is considered. Using special integral representations of the solution, the boundary-value problem 

is reduced to a system of singular integro-differential equations of the second kind with discontinuous kernels. The results of a 

numerical realization of the algorithm, characterizing the amplitude-frequency characteristics of a piecewise-uniform cylinder 

and the behaviour of the components of the electroelastic field in the region and on the boundary of the cylinder under conditions 

of the inverse piezoelectric effect, are presented. 0 2002 Elsevier Science Ltd. All rights reserved. 

The static and dynamic antiplane problems of electroelasticity for a circular cylinder with one and two 
symmetrically placed electrodes have been investigated by the series method [l]. The oscillations of 
infinite piezoceramic cylinders with tunnel-crack type defects and linear rigid inclusions have been 
considered by the method of singular integral equations for the direct piezoelectric effect in [2]. 

1. FORMULATION OF THE PROBLEM 

Consider a piezoceramic cylinder containing a curvilinear tunnel crack (a cut) L, referred to a Cartesian 
system of coordinates Ox1xzx3, infinite in the direction of the axis of symmetry of the material x3. On 
the surface of the cylinder, free from mechanical forces, there are 2n thin electrodes, infinitely long in 
the direction of the x3 axis, with specified electric potential differences. The non-electrode parts of the 
cylinder surface have an interface with a vacuum (air). The boundaries of the k-th electrode are defined 
by the quantities PZk_i ,and pu (k = 1, 2, . .., 2n), while the electric potential on them is given by the 
quantity 0; = Re(@Ee?‘) (o is the angular frequency and t is the time). It is assumed that the curvature 
of the contours L and C are Holder-class functions (31, and the electrodes are ideally conducting and 
absolutely flexible. 

Under these conditions, an electroelastic field is set up in the piecewise-uniform cylinder, 
corresponding to the state of antiplane deformation [l]. The complete system of differential equations 
in the quasistatic approximation includes the following relations 

a2u, 
4% +a2023 = P- at* ’ 

ai =$ 
x, 

(1.1) 

(3 m3 = c&a,,++ - e,5E,,, 

D,,, = e15il,,,u3 + af, E,,, (m = 1. 2) 
(1.2) 

div D = 0 

E=-grad+ 

Here (1.1) is the equation of motion, (1.2) are the material equations of the medium, (1.3) are the 
equations of electrostatics [4], om3 (m = 1, 2) are the components of the mechanical stress tensor, u3 
is the component of the elastic displacement vector in a direction parallel to the cylinder axis, E and 
D are the electric field and electric induction vectors, C$ is the electric potential, cf4 is the shear modulus, 
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measured at a constant value of the electric field, e15 is the piezoelectric constant, a:, is the permittivity, 
measured at fixed deformations respectively, and p is the mass density of the material. 

We reduce the system of equations (l.l)-(1.3) to differential equations in the displacement u3 and 
the electric potential I$ 

aZuj c&v*l+ + qSV2$ = p- 
at* ’ 

qSV2U3 - 3f,V2$ = 0 

From Eqs (1.4) we have the relations 

V2 us - c 
_2 a*+ -=O, V*F=O 

at* 

(1.4) 

where c is the velocity of a shear wave in the piezoceramic medium and krs is the electromechanical 
coupling coefficient [ 11. 

Taking relations (1.2), (1.3) and (1.5) into account, the mechanical and electrical quantities can be 
expressed in terms of the functions u3 and F using the formulae 

CJ I3 - io,, = 

(1.6) 
D, -iD2 =-23f,$. , z=x, +ti, 

Assuming 

us = Re( Useeiw), Q = Re(Oeeiw), 

we can write Eqs (1.5) in terms of the amplitude quantities 

F = Re(emiw F’) 

v*lJ, -I- y*u, = 0, V*F’=O @d&J +F’. 
$1 

3 
, y2 

c 
(1.7) 

where y is the wave number. 
Assuming that the crack edges are free from mechanical stresses, we can represent the mechanical 

and electrical boundary conditions on the contour L as follows [l]: 

((T,3 cos yt + 023 sin w)’ = 0 (1.8) 

E:=E;, D,‘=D; (1.9) 

Here Es is the tangential component of the electric field vector, D, is the normal component of the 
electric induction vector, w is the angle between the normal to the left edge of the cut L and the Ox, 
axis, and the plus and minus signs refer to the left and right edges of the cut when moving from its 
origin a to the end b (Fig. 1). Conditions (1.9) express the fact that the corresponding components of 
the electric field do not undergo jumps on passing through the cut L. 

Taking representations (1.5) and (1.6) into account, the boundary conditions on the surfaces of the 
cylinder and the crack can be represented in the form 

U,+CT,~F*}=O on C; F*+zU,=@*(5’), <*ECO 

(1.10) 
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Fig. 1 

where C, is the part of the contour C corresponding to the electroded surface of the cylinder, the operator 
d/&z denotes a derivative along the normal to the boundary contour, and the asterisks denote the 
amplitudes of the corresponding quantities. 

Hence, the problem consists of determining the functions Us and F* from Eqs (1.7) the boundary 
conditions (1.10) and the electrical conditions (1.9) on the cut L. 

2. THE INTEGRO-DIFFERENTIAL EQUATIONS OF THE BOUNDARY- 
VALUE PROBLEM OF ELECTROELASTICITY 

Following the approach described previously [2], we will represent the amplitudes of the required 
functions in the form 

(2.1) 

r = Iz - (1. ‘I = I’;* - ZI. <E L, 6’ E c 

Here Hi’)(x) is the Hankel function of the first kind of order v and ds is an element of length of the 
arc of the contour along which the integration is carried out. 

Integral representations (2.1) satisfy the differential equations (1.7), ensure that there is a jump in 
the displacement and continuity of the stress vector on L, and also ensure that the electrical conditions 
(1.9) are automatically satisfied. 

Substituting the limiting values of the functions (2.1) and their derivatives as z + co E L and z + 5: 
E C into boundary conditions (l.lO), we arrive at a system of singular integro-differential equations of 
the second kind 

(2.2) 
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in which the kernels g,,, (m = 1,2, . . ., 14) are defined by the expressions 

g,(i*,<i) = -$Re$$ +Y~,(Yr,o)c~s(Ylo -%o) 
0 

g,,(G*.i.)=+& +Yff,(Yr,o)co+Yo -%o) 
- 0 

g,,(<,co) = $[ H2(yro)c0s(v + w. - 2ao) - WbiJco4W -d] 

H,(x) = k+ H;"(x), H,(x) = x+ H;“(x) 
xx 7T.2 

r. = (co - cl, a0 = arg(ca - 6), 50 = 14’ -GJ O1to = arg(r’ - G) 

‘20 = 16 -cl ; , a2o =arg(C-6). ~~o=IC’-CO~ a30=~~!4~*-50) 

y/ = I&), WI = y$‘), wo = y&J VI0 = w(c)* Lb E L w fz c 

Here IJI and rapt are the angles between the normals to the contours L and C and the Ox, axis 
respectively and @(ct) is a piecewise-constant function, which specifies the values of the amplitudes 
of the electrical potentials on the electrodes. 

For system (2.2) to be uniquely solvable in the class of functions with derivatives that are unbounded 
close to the ends of the cut L [3], it is necessary to consider it together with the additional condition 

(2.3) 

which expresses the fact that the displacement jumps at the vertices of the cut L are equal to zero. 
Moreover, condition (2.3) ensures that the integral representation of the function F*(z) in (2.1) is unique. 

By determining the functions [U,], p(<*) and f(<*) f rom system (2.2) by using formulae (1.5) and 
(1.6) together with representations (2.1) we can determine all the components of the electroelastic field 
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in the piecewise-uniform cylinder. Note also that a solution of system (2.2) together with condition (2.3) 
exists for any frequency w not identical with the natural frequency. 

Introducing parametrization of the contour C using the equations <* = c*(p), <g = ~*@,,) (0 G p, 
PO G 27r), we obtain an expression for the amplitude of the electric charge distribution density q&i) on 
the k-th electrode. Bearing in mind that the cylinder is in contact with a vacuum, we can write 

41 (P) = D?’ (P), Pzr-, < P < Pzt (2.4) 

Here &I* (p) is the a m p litude of the normal component of the electric induction vector on the part 
of the cylinder surface covered with the k-th electrode. 

Making use of integral representation (2.1) for the function F*(z) and taking into account Eqs (2.4) 
and (1.6) we obtain 

4k@O) 
eWlo 

= -3f, j f’(c’)Im- ds, 6; E Co, 
C r*-C 

(2.5) 

where C, is the part of the contour C on which the k-th electrode is situated. 
Integrating expression (2.5) with respect to the variable PO in the limits from pu(_i to pa, we obtain 

the amplitude value of the total charge Qk of the k-th electrode, referred to unit length of the electrode. 
The current through this electrode that is equal to the conduction current in the generator circuit, can 
be found from the formula 

BZ& 
I, (t) = Re ime-iw 

I 

9 SVO) = -g 
0 

(2.6) 

Equation (2.6) enables us to determine the antiresonance frequencies for which I&) = 0. 
Note that in the case of antiplane deformation, the longitudinal shear stresses on the surface free 

from mechanical load do not have singularities at the edges of the electrodes [5]. Nevertheless, the 
components of the electric induction vector possess root-type singularities at the edges of the electrodes, 
which follows directly from an asymptotic analysis of singular integral equations (2.2) and expressions 
(2.4) and (2.5). 

3. THE STRESS INTENSITY FACTOR 

To calculate the stress intensity factor K,,, [6] we will obtain the principal asymptotic form of the shear 
stress on a crack which extends to the vertex. Here we will start from formulae which define the behaviour 
of the Cauchy-type integrals in the neighbourhood of the ends of the cut L in the case when the density 
has a power singularity [7], 

ro(<) 
T(r) = - 

(z-c)= ’ 
0=x, +ix,, Oax,61 

(3.1) 

The following relations hold for the functions A,&) 

lim A, (z)(z - aY 
L--)0 

=o. Jin$l*(Z)(Z-b)“=O 

It follows from an asymptotic analysis of the last singular integro-differential equation in (2.2) in the 
neighbourhood of the vertex of the cut L that o = l/2 . Hence, introducing parametrization of the crack 
contour < = c(S), we can put 

(3.2) 

where the function L&,(6) is Holder continuous. 
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We have (retaining only terms which make a contribution to the asymptotic form) 

cr,, = Re(.S,e-‘(“‘) 

where c is the tip of the cut and ids = v(c). 
On the basis of expressions (2.1) we can write the principal part of function (3.3) 

Using asymptotic formulae (3.1) and taking relations (3.2) into account we obtain 

Here r* = (z - c 1, the lower sign relates to the tip c = a and the upper sign relates to c = b. 
Starting from relations (3.5) we can find the stress intensity factor 

- Re[Ro(*l)e-‘“1 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The asymptotic form of the normal component of the electric induction vector on the extension beyond 
the tip of the cut is 

D,, = D,cos~(~l)+D~sin~(+l)=+ers 
Re[fio(+l)e-‘a] 

2Jz7T) 
(3.7) 

The remaining electrical quantities in the neighbourhood of the cut L are bounded. From the 
equations of state (1.2) we have 

d!!Le E 
0, =c44 an I5 n, D,, =e,,+;,En (3.8) 

where D, is the normal component of the electric induction on the arc L’, as close to L as desired. 
Since [a,,] = [Dn] = 0 and the determinant of system (3.8) is non-zero, we obtain [du@r] = [En] = 0. 
Hence, we extend the electric field vector E continuously through the cut. 

4. EXAMPLES 

Consider a piezoceramic cylinder (made of PZT-4 material [l]) of elliptic cross-section, containing a 
rectilinear crack, oriented at an angle 6 to the Oxi axis. The cylinder is excited by two electrodes with 
a difference in the amplitudes of the potentials of 2@*, the centres of which lie on the x2 axis. The 
parametric equations of the contours L and C respectively have the form 

6 = 16ei0 ( sE[-I, I] 
(4.1) 

c* = R, cos p + iR, sin 0, p E [O. 2x1 

The system of integro-differential equations (2.2), together with condition (2.3) and taking Eqs (4.1) 
into account, was solved by a special scheme of the method of quadratures [2]. 

In Fig. 2 we show a graph of the relative stress intensity factor (Km) = cf4dm 1 S&(l) ]/ 
(2ei5 I@* I) and the quantity Q* = IQ/ 3F1@*) I (Q is the amplitude of the total charge on the electrode) 
as a function of the normalized wave number yR with RJR2 = 1, LIR = 0.2,6 = 0 (R = (RI + R2)/2, 
where 21 is the cut length. The values of the normalised wave numbers, corresponding to the first three 



Antiplane problem of electroelasticity for a cylinder with a tunnel crack 689 

2 

Fig. 2 

0 0.5 6 1.0 

Fig. 3 

natural frequencies of the oscillations in this case are such that y(ijP = 1.35, y&’ = 3.9, y(s)P = 4.24. 
Knowing the value of (Km), the stress intensity factor can be determined from the formula 

Ki, =fe,s 10’ l(Ki,)cos (ox-argQ,(&l))/JI 

Figure 3 illustrates the change in the value of h = c&[Us]I 1 Q* 1, which represents the jump in the 
displacement on the crack for different angles of orientation of the crack in a circular cylinder with 
yR = 3 and l/R = 0.4 (in view of the symmetry, for 6 2 0). The curve with number m is drawn for the 
value 6 = (m - 1)rr. Note that when 6 = n/2 the presence of a crack does not give rise to perturbations 
in the electroelastic state of the cylinder. 

In the versions of the calculation considered, the following values of the parameters defining the 
position of the electrodes were specified: 0, = 57r/l4, & = 97r/14, 0s = 197r/14, & = 23rc/14. 
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Fig. 5 

In Fig. 4 we show data characterizing the distribution of the quantity ?I = c:~ 1 U#D* 1 on the contour 
of a piecewise-uniform cylinder for different areas of the electrode covering for RI/R2 = 2,1/R, = 0.4, 
19 = 0 and yR = 0.5 for the following values of the parameters: pi = n/6, @z = 5n/6, fl3 = 7rt/6, 
pJ = 1171/6 (curve 1) Pk = (2k- 1)71/4 (k = 1,2,3,4) (curve 2) and fi, = 571/14, & = 971/14, 0s = 19rti14, 
p4 = 23n/14 (curve 3). 

The level lines of the modulus of the displacement amplitude in a piecewise-uniform cylinder in the 
region of the first three natural frequencies of the oscillations for l/R = 0.2 are presented in Figs 5(a-c) 
(in view of the symmetry we only show half the section). The brightest zones correspond to maximum 
values of 1 l_J, I. We assumed pi = 57c/l4, p2 = 9n/14, B3 = 197c/14, l$ = 23n/14 in the calculations. 
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